Coordination Mechanisms for Selfish Routing over Time on a Tree

نویسندگان

  • Sayan Bhattacharya
  • Janardhan Kulkarni
  • Vahab S. Mirrokni
چکیده

While selfish routing has been studied extensively, the problem of designing better coordination mechanisms for routing over time in general graphs has remained an open problem. In this paper, we focus on tree networks (single source multiple destinations) with the goal of minimizing (weighted) average sojourn time of jobs, and provide the first coordination mechanisms with provable price of anarchy for this problem. Interestingly, we achieve our price of anarchy results using simple and strongly local policies such as Shortest Job First and the Smith’s Rule (also called HDF). In particular, for the case of unweighted jobs, we design a coordination mechanism with polylogarithmic price of anarchy. For weighted jobs, on the other hand, we show that price of anarchy is a function of the depth of the tree and accompany this result by a lower bound for the price of anarchy for the Smith Rule policy and other common strongly local scheduling policies. Our price of anarchy results also imply improved approximation algorithms for the underlying optimization problem of routing over a tree. This problem is well motivated from applications of routing in supercomputers and data center networks where average sojourn time is an important metric.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coordination Mechanisms

We introduce the notion of coordination mechanisms to improve the performance in systems with independent selfish agents. The quality of a coordination mechanism is measured by its price of anarchy—the worst-case performance of a Nash equilibrium over the (centrally controlled) social optimum. We give upper and lower bounds for the price of anarchy for selfish resource allocation and analyze th...

متن کامل

Balancing Load via Small Coalitions in Selfish Ring Routing Games

This paper concerns the asymmetric atomic selfish routing game for load balancing in ring networks. In the selfish routing, each player selects a path in the ring network to route one unit traffic between its source and destination nodes, aiming at a minimum maximum link load along its own path. The selfish path selections by individuals ignore the system objective of minimizing the maximum loa...

متن کامل

Competitive Routing over Time

Congestion games are a fundamental and widely studied model for selfish allocation problems like routing and load balancing. An intrinsic property of these games is that players allocate resources simultaneously and instantly. This is particularly unrealistic for many network routing scenarios, which are one of the prominent application scenarios of congestion games. In many networks, load trav...

متن کامل

Advanced Detection of Selfish or Malicious Nodes in Ad Hoc Networks

The fact that security is a critical problem when implementing mobile ad hoc networks (MANETs) is widely acknowledged. One of the different kinds of misbehavior a node may exhibit is selfishness. A selfish node wants to preserve own resources while using the services of others and consuming their resources. One way of preventing selfishness in a MANET is a detection and exclusion mechanism. In ...

متن کامل

Selfish Routing on Dynamic Flows

Selfish routing on dynamic flows over time is used to model scenarios that vary with time in which individual agents act in their best interest. In this paper we provide a survey of a particular dynamic model, the deterministic queuing model, and discuss how the model can be adjusted and applied to different real-life scenarios. We then examine how these adjustments affect the computability, op...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014